ం CORRIGÉ DU CONCOURS POUR L'ADMISSION EN FORMATION DES 🦠 INGÉNIEURS DE L'ÉCOLE NATIONALE SUPÉRIEURE MARITIME **ANNÉE 2019**

Durée: 2 heures

Le candidat traitera 3 questions au choix parmi les 4 proposées, chaque question représentant le même nombre de points.

1re question

1. Soient f et g les fonctions définies sur \mathbb{R} respectivement par :

$$f(x) = x^2 e^{-x}$$
 et $g(x) = e^{-x}$.

a. Les points communs aux deux courbes ont des abscisses solutions de l'équation :

$$f(x) = g(x) \iff x^2 e^{-x} = e^{-x} \iff x^2 = 1, \text{ car } e^{-x} \neq 0.$$

On a donc deux solutions:

$$x = 1$$
, d'où $f(1) = g(1) = e^{-1}$ et

$$x = -1$$
, d'où $f(-1) = g(-1) = e$.

 \mathcal{C}_f et \mathcal{C}_g ont en commun les points de coordonnées $(1; e^{-1})$ et (-1; e).

b. Soit *d* la fonction définie sur \mathbb{R} par $d(x) = f(x) - g(x) = x^2 e^{-x} - e^{-x} = e^{-x} (x^2 - 1)$.

Comme $e^{-x} > 0$ quel que soit le réel x, le signe de d(x) est celui du trinôme $x^2 - 1$ qui est positif sauf entre -1 et 1.

Conclusion : sur] $-\infty$; -1[et sur]1 ; $+\infty$ [, d(x) > 0 ce qui signifie que \mathcal{C}_f est au dessus de \mathcal{C}_g et sur] – 1 ; 1[, d(x) < 0 ce qui signifie que \mathcal{C}_f est au dessous de \mathcal{C}_g .

2. Soit *h* la fonction définie sur \mathbb{R} par $h(x) = (x^2 - 1)e^{-x}$.

La fonction h est donc la fonction d précédente.

a. On admet que $\lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty$ et donc que $\lim_{x \to +\infty} \frac{x^2}{e^x} = 0$. On a $h(x) = e^{-x} (x^2 - 1) = e^{-x} x^2 \left(1 - \frac{1}{x^2}\right)$.

On a
$$h(x) = e^{-x} (x^2 - 1) = e^{-x} x^2 \left(1 - \frac{1}{x^2} \right)$$

Comme $\lim_{x \to +\infty} 1 - \frac{1}{x^2} = 1$ et que $\lim_{x \to +\infty} \frac{x^2}{e^x} = 0$, on a donc par produit de limites

b. h produit de fonctions dérivables sur \mathbb{R} est dérivable et pour tout réel x,

$$h'(x) = -e^{-x}(x^2 - 1) + 2xe^{-x} = e^{-x}(2x - x^2 + 1) = e^{-x}(-x^2 + 2x + 1).$$

Comme $e^{-x} > 0$ quel que soit $x \in \mathbb{R}$, h'(x) a le signe du trinôme $-x^2 + 2x + 1$.

c. Comme $\Delta = 2^2 - 4 \times (-1) \times 1 = 4 + 4 = 8 = (2\sqrt{2})^2 > 0$, le trinôme $-x^2 + 2x + 1$ a deux

racines:
$$\frac{-2+2\sqrt{2}}{-2} = 1 - \sqrt{2}$$
 et $1 + \sqrt{2}$.

On sait que h'(x) < 0, sauf entre les racines, donc :

h'(x) > 0 sur $[1 - \sqrt{2}; 1 + \sqrt{2}]$ et h croissante sur cet intervalle

$$h'(x) < 0 \text{ sur }]-\infty; 1-\sqrt{2}] \text{ et sur }]1+\sqrt{2}; +\infty[.$$

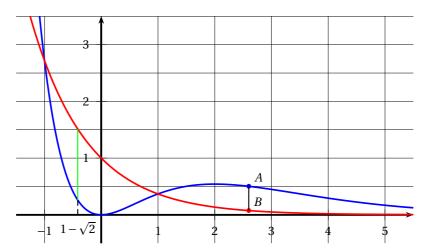
D'où le tableau de variations de h suivant :

х		-∞	$1-\sqrt{2}$		$1+\sqrt{2}$	+∞
f'(.	x)	+	0	_	0	+
f			≈ -1,25		≈ 0,43	0

- **3.** Soient les points A(x; f(x)) et B(x; g(x)) pour $x \in [-1; +\infty[$. On s'intéresse à la distance AB.
 - **a.** On a AB = $|g(x) f(x)| = |h(x)| = |(x^2 1)e^{-x}| = \begin{cases} h(x) & \text{si } x \in [1; +\infty[\\ -h(x) & \text{si } x \in [-1; 1] \end{cases}$, d'après le signe de $x^2 1$.
 - **b.** D'après le tableau de variations de la fonction h, la plus grande valeur de h(x) en valeur absolue est $h(1-\sqrt{2})$.

La plus grande distance AB est obtenue pour $x_0 = 1 - \sqrt{2}$.

On a alors $AB_{max} = \left| h \left(1 - \sqrt{2} \right) \right| = \left| \left[\left(1 - \sqrt{2} \right)^2 - 1 \right] e^{1 - \sqrt{2}} \right| = \left| \left(2 - 2\sqrt{2} \right) e^{1 - \sqrt{2}} \right| = \left(2\sqrt{2} - 2 \right) e^{1 - \sqrt{2}} \approx 1,254.$ (cf. figure ci-dessous)



4. a.

Saisir n $S \leftarrow 0$ Pour k allant de 0 à n-1 $S \leftarrow S + f(k/n) \times \frac{1}{n}$ Fin pour

- **b.** *F* produit de fonctions dérivables sur \mathbb{R} est dérivable et sur cet intervalle $F(x) = (-x^2 2x 2) e^{-x} \Rightarrow F'(x) = (-2x 2) e^{-x} (-x^2 2x 2) e^{-x} = e^{-x} (-2x 2 + x^2 + 2x + 2) = x^2 e^{-x} = f(x)$: ce résultat montre que *F* est une primitive de *f* sur \mathbb{R} .
- **c.** La fonction f étant positive sur [0; 1], on a donc $\mathscr{A} = \int_0^1 f(x) \, \mathrm{d}x = [F(x)]_0^1 = F(1) F(0) = (-1^2 2 \times 1 2) \, \mathrm{e}^{-1} (-0^2 0 \times 2 2) \, \mathrm{e}^{-0} = -5 \mathrm{e}^{-1} + 2 = 2 5 \mathrm{e}^{-1} \approx 0,160603.$ Votre résultat est-il cohérent avec les valeurs de S obtenues précédemment? Ce résultat est bien cohérent avec la valeur donnée par l'algorithme.

2e question

Un biologiste étudie le développement d'un certain type de parasite.

Il place en milieu clos une colonie de 50 000 individus.

Des expériences ont démontré que dans ces conditions, à long terme, la population se stabilise autour de 90 000 individus, sans jamais dépasser cette valeur.

On considèrera que la population est « stable » lorsque le taux d'évolution du nombre d'individus en une journée est inférieur à $0,1\,\%$.

Rappel: Lorsqu'une quantité passe de la valeur Q_1 à la valeur Q_2 le taux d'évolution est $t = \frac{Q_2 - Q_1}{Q_1}$

1. Premier modèle

Au bout d'une journée, il observe que la population s'élève à 54 000 individus.

Il décide de faire l'hypothèse suivante : En notant p_n le nombre d'individus, en milliers, au bout de n journées, la suite (p_n) vérifie $p_0 = 50$ et pour tout entier naturel n, $p_{n+1} = 0.9p_n + 9$.

- **a.** D'après le modèle $p_1 = 0.9 \times 50 + 9 = 45 + 9 = 54$, ce qui correspondà l'observation.
- **b.** On note $v_n = p_n 90$.

Quelque soit le naturel n, $v_{n+1} = p_{n+1} - 90 = 0,9p_n + 9 - 90 = 0,9(p_n + 10 - 100)) = 0,9(p_n - 90) = 0,9v_n$.

L'égalité $v_{n+1} = 0,9v_n$ vraie pour tout naturel, montre que la suite (v_n) est géométrique de raison 0.9.

c. On a $v_0 = p_0 - 90 = 50 - 90 = -40$. On sait qu'alors que pour tout $n \in \mathbb{N}$, $v_n = v_0 \times 0, 9^n = -40 \times 0, 9^n$.

Or $v_n = p_n - 90 \iff p_n = v_n + 90 = -40 \times 0, 9^n + 90 = 90 - 40 \times 0, 9^n$.

Donc pour $n \in \mathbb{N}$, $p_n = 90 - 40 \times 0, 9^n$.

- **d.** On sait que comme 0 < 0, 9 < 1 $\lim_{n \to +\infty} 0, 9^n = 0$ et aussi que $\lim_{n \to +\infty} 40 \times 0, 9^n = 0$, donc finalement $\lim_{n \to +\infty} p_n = 90$, soit $90\ 000$ individus ce qui correspond bien aux expériences. Le modèle est compatible.
- e. La population est stable quand le taux d'évolution est inférieur à 0,1 %, soit :

$$\frac{p_{n+1} - p_n}{p_n} < 0,001 \iff \frac{90 - 40 \times 0,9^{n+1} - (90 - 40 \times 0,9^n)}{90 - 40 \times 0,9^n} < 0,001 \iff$$

 $\frac{40\left(0,9^{n}-0,9^{n+1}\right)}{90-40\times0,9^{n}}<0,001 \text{ ou encore en multipliant par }p_{n}=90-40\times0,9^{n}>0,$

$$40 \times 0,9^{n} (1-0,9) < 0,001 (90-40 \times 0,9^{n}) \iff 4 \times 0,9^{n} < 0,09-0,04 \times 0,9^{n} \iff$$

$$4,04 \times 0,9^n < 0,09 \iff 0,9^n < \frac{0,09}{4,04} \iff n \ln 0,9 < \ln \left(\frac{0,9}{4,04}\right) \iff n > \frac{\ln \left(\frac{0,09}{4,04}\right)}{\ln 0,9}.$$

Or $\frac{\ln\left(\frac{0.09}{4.04}\right)}{\ln 0.9} \approx 36.1$: il faudra donc attendre 37 jours.

2. Deuxième modèle MN

Au bout de deux journées, il observe que la population d'élève à 57 888 individus.

Il décide d'adopter un nouveau modèle : En notant r_n le nombre d'individus au bout de n journée(s), la suite (r_n) vérifie pour tout entier naturel n, $r_{n+1} = f(r_n)$ où f est la fonction définie sur $\mathbb R$ par

$$f(x) = -0.002x^2 + 1.18x$$
.

- **a.** On admet que x est le nombre d'individus en milliers et que $r_0 = 50$.
 - $r_1 = f(r_0) = 1,18 \times 50 0,002 \times 50^2 = 54$, soit 540 000 individus;
 - $r_2 = f(r_1) = 1,18 \times 54 0,002 \times 54^2 = 57,888$, soit 57 888 individus.

Ce modèle est en accord avec les décomptes de la population effectués les deux premiers jours.

b. f est dérivable sur \mathbb{R} , et sur cet intervalle f'(x) = -0.004x + 1,18 qui s'annule si

$$-0,004x + 1,18 = 0 \iff 1,18 = 0,004x \iff \frac{1,18}{0,004} = 295.$$

On a donc $f'(x) > 0 \iff -0.004x + 1.18 > 0 \iff 1.18 > 0.004x \iff x < 295$: la fonction f est donc croissante sur l'intervalle [0; 295].

- Démonstration par récurrence :
- Initialisation

On a vu que 0 < 50 < 54, soit $0 < r_0 < r_1 < 90$: l'encadrement est vrai au rang 0.

Hérédité

Supposons qu'il existe $n \in \mathbb{N}$ tel que : $0 \le r_n \le r_{n+1} \le 90$.

Par croissance de la fonction f sur l'intervalle [0; 90] (puisqu'elle l'est sur [; 295]), on a donc :

$$f(0) \leqslant f(r_n) \leqslant f(r_{n+1}) \leqslant f(90).$$

Comme f(0) = 0, $f(r_n) = r_{n+1}$, $f(r_{n+1}) = r_{n+2}$ et $f(90) = 1,18 \times 90 - 0,002 \times 90^2 = 106,2 - 16,2 = 90$, on obtient donc

 $0 \le r_{n+1} \le r_{n+2} \le 90$: l'encadrement est vrai au rang n+1.

L'encadrement est vrai au rang 0 et s'il est est vrai à un rang n quelconque, il l'est aussi au rang n+1: on a donc démontré par le principe de récurrence que pour tout naturel n, $0 \le r_n \le r_{n+1} \le 90$.

- c. le résultat précédent montre que :
 - la suite (r_n) est croissante et
 - qu'elle est bornée, donc en particulier majorée par 90.

Croissante et majorée elle est donc convergente vers une limite ℓ avec $\ell \leqslant 90$.

d.
$$f(\ell) = \ell \iff 1,18\ell - 0,002l^2 = \ell \iff 0,18\ell 0,002l^2 \iff \ell(0,18-0,002\ell) = 0 \iff \ell = 0 \text{ ou } \ell = \frac{0,18}{0,002} = 90.$$

Seule la deuxième solution est vraisemblable, donc $\ell = 90$.

e.

$$r \leftarrow 50$$

 $n \leftarrow 0$
 $t \leftarrow 1$
Tant que $r < 90$
 $r' \leftarrow r$
 $r \leftarrow 1,18 * r' - 0,002 * r'^2$
 $n \leftarrow n + 1$
 $t \leftarrow n$
Fin tant que
Afficher t

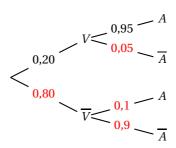
3e question

Dans une grande entreprise, un virus informatique a infecté 20 % des ordinateurs. Un technicien de la maintenance informatique doit les contrôler à l'aide d'un logiciel anti-virus.

Lorsqu'un ordinateur est infecté par le virus, le logiciel émet un message d'alerte dans 95 % des cas. 27 % des tests ont donné lieu à un message d'alerte.

1. On choisit au hasard un des ordinateurs de l'entreprise, et on note les évènements suivants : V : « l'ordinateur est infecté par le virus » A : « Le logiciel émet un message d'alerte »

a.



On a donc $P(V \cap A)P(V) \times P_V(A) = 0,20 \times 0,95 = 0,19$.

b. D'après la loi des probabilités totales :

$$P(A) = P(V \cap A) + P\left(\overline{V} \cap A\right) \text{ soit } 0, 27 = 0, 19 + P\left(\overline{V} \cap A\right) \iff P\left(\overline{V} \cap A\right) = 0, 27 - 0, 19 = 0, 08.$$

Or
$$P(\overline{V} \cap A) = P(\overline{V}) \times P_{\overline{V}}(A)$$
, soit $0.08 = 0.8 \times P_{\overline{V}}(A) \iff P_{\overline{V}}(A) = 0.1$.

c. On a
$$P_A(V) = \frac{P(A \cap V)}{P(A)} = \frac{0.19}{0.27} \approx 0.70.$$

Comme $0,70 < 0,75 = \frac{3}{4}$, le technicien a raison.

- **2. a.** i. S'il y a eu alerte et si l'ordinateur est infecté le coût est de $10 + 25 = 35 \in$;
 - ii. S'il a eu alerte et que l'ordinateur n'est pas infecté, le coût est de 10 €;
 - iii. S'il n'y a pas eu alerte le coût est de 0 €.

D'où le tableau de la loi de probabilité de la la variable aléatoire *X* :

	X = 35	X = 10	X = 0
P(X =)	0,19	0,08	0,73

b. On a $E(X) = 0.19 \times 35 + 0.08 \times 10 + 0 \times 0.73 = 6.65 + 0.80 = 7.45 (€).$

Ceci signifie que le coût moyen par ordinateur de la réparation sera de 7,45 €.

- c. Sans le second test et en réparant tous les ordinateurs le coût de réparation par ordinateur sera de 0,27 × 25 = 6,75 €donc inférieure au coût dans la méthode précédente. Cette décision se justifie donc.
- **3. a.** Dans ces conditions *Y* suit une loi binomiale de paramètres n = 400 et p = 0,20. On a $E = n \times p = 400 \times 0,20 = 80$.

La variance V est $V=n\times(1-p)=400\times0,2\times0,8=64$ et l'écart type est égal à : $\sigma=\sqrt{V}$ és qrt64=8.

b. La probabilité qu'au moins un ordinateur soit infecté par ce virus est égale à $1-0,27^0 \times (1-0,27)^{400} = 1-0,73^{400}$.

Comme $0.27^{400} \approx 1.7 \times 10^{-39} \approx 0$. la probabilité qu'au moins un ordinateur soit infecté par ce virus est pratiquement égale à 1: cet évènement est certain.

c. i. On a $P(Y \le 90) \iff P(Z < 1,25) \approx 0,894$.

ii.
$$P(80-c \le Y \le 80+c) \approx 0.9 \iff P(-c \le Y-80 \le c) \approx 0.9 \iff P\left(-\frac{c}{8} \le Z \le \frac{c}{8}\right) \approx 0.9 \iff 2P\left(Z \le \frac{c}{8}\right)-1 \approx 0.9 \iff P\left(Z \le \frac{c}{8}\right) \approx 0.95$$
, soit d'après la table $\frac{c}{8} \approx 1.65$, d'où finalement $c \approx 13$.

4e question

On se place dans un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$ de l'espace.

On note P le plan $(O; \vec{i}, \vec{j})$ et on considère les points :

$$A(1;2;\sqrt{5}), B(2;-1;\sqrt{5}), C(3;1;0), D(0;0;\sqrt{5}), S\left(\frac{1}{2};-\frac{3}{2};0\right) \text{ et } T\left(-\frac{1}{2};\frac{3}{2};0\right)$$

- 1. **a.** On a $\overrightarrow{AB} \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$, donc $M(x; y; z) \in D \iff \overrightarrow{OM} = t \overrightarrow{AB} \iff \begin{cases} x = 1t \\ y = -3t \\ z = 0 \end{cases}$
 - **b.** Les points $M(x; y; z) \in D$ sont tels que :

$$OM^2 = \left(\frac{\sqrt{10}}{2}\right)^2 = \frac{10}{4} \iff t^2 + 9t^2 = \frac{10}{4} \iff 10t^1 = \frac{10}{4} \iff t^2 = \frac{1}{4}, \text{ soit } t = -\frac{1}{2} \text{ ou } t = \frac{1}{2}$$

En reportant dans l'équation paramétrique de D, les points solutions sont $M_1\left(\frac{1}{2}; -\frac{3}{2}; 0\right)$ et $M_2\left(-\frac{1}{2}; +\frac{3}{2}; 0\right)$ (qui sont symétriques autour de O).

c. On a $\overrightarrow{CD} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, donc une équation du plan Q normal à ce vecteur est :

$$M(x; y; z) \in Q \iff -3x - y + z\sqrt{5} = d.$$

Or
$$O(0; 0; 0) \in Q \iff 0 = d$$
.

Conclusion :
$$M(x; y; z) \in Q \iff -3x - y + z\sqrt{5} = 0$$
.

- **d.** En prenant t = -1, un autre point de D est E(-1; 3; 0) et $-3 \times (-1) - 3 + 0 = 0 \iff 0 = 0$, donc $E \in D$ et $D \in Q$. On a bien $D \subset Q$.
- 2. Soit t un nombre réel appartenant à [0; 1] et M le point du segment [CD] vérifiant l'égalité vectorielle:

$$\overrightarrow{CM} = t\overrightarrow{CD}$$
.

a.
$$\overrightarrow{CM} = t\overrightarrow{CD} \iff \left\{ \begin{array}{lll} x-3 & = & -3t \\ y-1 & = & -1t \\ z-0 & = & \sqrt{5}t \end{array} \right. \iff \left\{ \begin{array}{lll} x & = & 3-3t \\ y & = & 1-t \\ z & = & \sqrt{5}t \end{array} \right.$$

b. Le projeté orthogonal de M sur le plan P a les mêmes coordonnées que M mais une cote nulle, donc H(3-3t; 1-t; 0).

c. On a
$$\overrightarrow{HS}$$
 $\begin{pmatrix} \frac{5}{2} - 3t \\ \frac{5}{2} - t \\ 0 \end{pmatrix}$ et \overrightarrow{HT} $\begin{pmatrix} \frac{7}{2} - 3t \\ \frac{1}{2} - t \\ 0 \end{pmatrix}$.

Il en résulte que
$$HS^2 = \frac{25}{4} + 9t^2 - 15t + \frac{25}{4} + t^2 - 5t = \frac{25}{2} + 10t^2 - 20t$$
 et $HT^2 = \frac{49}{4} + 9t^2 - 21t + \frac{1}{4} + t^2 + t = \frac{25}{2} + 10t^2 - 20t$.
On a donc $HS^2 = HT^2 \Rightarrow HS = HT$, donc HST est un triangle isocèle en H .

$$HT^2 = \frac{49}{4} + 9t^2 - 21t + \frac{1}{4} + t^2 + t = \frac{25}{3} + 10t^2 - 20t$$

On a donc
$$HS^2 = HT^2 \Rightarrow HS = HT$$
, donc HST est un triangle isocèle en H

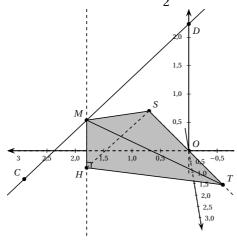
Or les points S et T sont symétriques autour de O, donc O est le milieu de Smédiane est aussi hauteur du triangle isocèle TSH.

L'aire de ce triangle est donc égale à $\frac{ST \times OH}{2}$.

De
$$\overrightarrow{ST}\begin{pmatrix} -1\\3\\0 \end{pmatrix}$$
 on en déduit que $ST^2=1+9=10$, d'où $ST=\sqrt{10}$; de même $\overrightarrow{OH}\begin{pmatrix} (3-3t)\\1-t\\0 \end{pmatrix}$

on en déduit que
$$OH^2 = 9 + 9t^2 - 18t + 1 + t^2 - 2t = 10t^2 + 10 - 20t = 10(t^2 + 1 - 2t) = 10(t-1)^2$$
, d'où $OH = \sqrt{10}(1-t)$ (car $t \in [0; 1]$).

L'aire est donc égale à
$$\frac{\sqrt{10} \times \sqrt{10}(1-t)}{2} = 5(1-t)$$
.



d. On a vu que (MH) est perpendiculaire au plan (TSH); le volume de la pyramide TSMH est donc égal à $\frac{\hat{aire}(TSH) \times MH}{2}$

On a de façon évidente
$$MH = t\sqrt{5}$$
, donc

$$V(t) = \frac{5\sqrt{5}}{3}t(1-t).$$

e. Le trinôme $t - t^2$ a pour valeur maximale la valeur qui annule sa dérivée 1 - 2t, soit

On a donc
$$V_{\text{maxi}} = \frac{5\sqrt{5}}{3} \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{5\sqrt{5}}{12}$$
, pour $M_0 \left(\frac{3}{2} ; \frac{1}{2} ; \frac{\sqrt{5}}{2} \right)$.

f. On a
$$\overrightarrow{M_0S}$$
 $\begin{pmatrix} -1 \\ -2 \\ -\frac{\sqrt{5}}{2} \end{pmatrix}$ et $\overrightarrow{M_0T}$ $\begin{pmatrix} -2 \\ 1 \\ -\frac{\sqrt{5}}{2} \end{pmatrix}$.
Donc $\overrightarrow{M_0S} \cdot \overrightarrow{M_0T} = 2 - 2 + \frac{5}{4} = \frac{5}{4}$

g. On a aussi
$$\overrightarrow{M_0S} \cdot \overrightarrow{M_0T} = M_0S \times M_0T \times \cos\left(\widehat{SM_0T}\right)$$
. D'où $M_0S = \sqrt{1+4+\frac{5}{4}} = \frac{5}{2}$; $M_0T = \sqrt{4+1+\frac{5}{4}} = \frac{5}{2}$ En égalant les deux valeurs du produit scalaire :

$$\frac{5}{4} = \frac{5}{2} \times \frac{5}{2} \times \cos\left(\widehat{SM_0T}\right) \iff \cos\left(\widehat{SM_0T}\right) = \frac{\frac{5}{4}}{\frac{25}{4}} = \frac{1}{5} = 0, 2.$$

La calculatrice donne $\widehat{SM_0T} \approx 78,463$ soit environ 78,5°.

